We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Mutations in the Apolipoprotein C3 Gene Lower Triglyceride Levels and Reduce Heart Disease Risk

By LabMedica International staff writers
Posted on 30 Jun 2014
Print article
Mutations, which prevent the normal functioning of the APOC3 (apolipoprotein C3) gene, lower blood triglyceride levels and reduce the risk of developing coronary artery disease (CAD).

Apolipoprotein C3 is a very low density lipoprotein (VLDL) protein. APOC3 inhibits lipoprotein lipase and hepatic lipase and is thought to delay catabolism of triglyceride-rich particles.

To evaluate the linkage between triglycerides and APOC3 and the risk of developing CAD, investigators at Harvard Medical School (Cambridge, MA, USA) and colleagues at the University of Texas Health Science Center (Houston, USA) and the University of Washington (Seattle, USA) sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the [US] National Heart, Lung, and Blood Institute's Exome Sequencing Project. The investigators conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels.

After identifying four APOC3 mutations that lowered levels of circulating triglycerides, the investigators evaluated their association with the risk of coronary heart disease in 110,970 persons.

Results revealed that approximately one in 150 persons (0.67%) in the study was a heterozygous carrier of at least one of the four triglyceride-lowering mutations. Triglyceride levels in the carriers were 39% lower than levels in non-carriers, and circulating levels of APOC3 in carriers were 46% lower than levels in non-carriers. The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 non-carriers.

"The combination of our genetic results, together with recent clinical trials of drugs that raised HDL levels but failed to prevent heart disease, are turning decades of conventional wisdom on its head," said senior author Dr. Sekar Kathiresan, associate professor of medicine at Harvard Medical School. "HDL and triglycerides are both correlated with heart attack, and have an inverse relationship with one another—the lower the HDL, the higher the triglycerides. It has long been presumed that low HDL is the causal factor in heart disease, and triglycerides are along for the ride. But our genetic data indicate that the true causal factor may not be HDL after all, but triglycerides."

"Although statins remain a powerful arrow in the quiver, the notion of residual risk of coronary heart disease continues to be a significant clinical problem," said Dr. Kathiresan. "Our study really reinvigorates the idea of lowering triglycerides and specifically, by blocking APOC3, as a viable therapeutic strategy for addressing residual risk."

The study was published in the June 18, 2014, online issue of the New England Journal of Medicine (NEJM).

Related Links:

Harvard Medical School
University of Texas Health Science Center
University of Washington


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.