We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Fungal Infection Identified by Pathogen Detection Array Technology

By LabMedica International staff writers
Posted on 09 Feb 2016
Print article
Image: Sporangiophores, columellae and primitive rhizoids of Rhizomucor spp., the zygomycetous fungus detected by the PathoChip, which has the ability to detect all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa (Photo courtesy of the University of Adelaide).
Image: Sporangiophores, columellae and primitive rhizoids of Rhizomucor spp., the zygomycetous fungus detected by the PathoChip, which has the ability to detect all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa (Photo courtesy of the University of Adelaide).
Image: Rhizomucor pusillus (Photo courtesy of the University of Adelaide).
Image: Rhizomucor pusillus (Photo courtesy of the University of Adelaide).
Patients who are undergoing treatment for diseases such as cancer often face the added challenge of a compromised immune system, which can be challenging to both of their condition and the drugs used to treat it, leaving them vulnerable to various opportunistic infections.

A novel investigational technology has been developed that can rapidly identify elusive microorganisms which are not only life-threatening, but those caused by rare organisms are extremely difficult to isolate and identify.

Scientists at the University of Pennsylvania (Philadelphia, PA, USA) utilized a pathogen array technology referred to as PathoChip, comprised of oligonucleotide probes that can detect all the sequenced viruses as well as known pathogenic bacteria, fungi and parasites and family-specific conserved probes, thus providing a means for detecting previously uncharacterized members of a family. The technology contains 60,000 probes that simultaneously test for all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa.

The investigators applied the PathoChip test to tissue samples of a patient with relapsed acute myelogenous leukemia (AML). The patient, a middle-aged man, had undergone chemotherapy for the cancer, a treatment that is well known to weaken the immune system, increasing susceptibility to infection. As a result, he developed an unknown fungal infection. The team rapidly identified a zygomycetous fungus, Rhizomucor, an otherwise challenge for the clinical laboratories, predominantly in the patient with acute myelogenous leukemia.

Erle Robertson, PhD, a professor and vice-chair for research in Otorhinolaryngology, said, “We've run many tests to see if we could identify pathogens in the laboratory, just to see if the PathoChip has efficacy in identifying a variety of organisms, and we were able to identify all infectious agents tested, but this was the first time we actually looked directly at a patient sample to identify a pathogenic agent. With this technology, out of 60,000 possibilities and probes that we used, in a little over 24 hours we were able to identify this particular fungi.” The study was published originally online on November 20, 2015, in the journal Cancer, Biology & Therapy.

Related Links:

University of Pennsylvania


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.