Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
GLOBETECH PUBLISHING
FOCUS DIAGNOSTICS, INC.

Microneedles Detect Real-Time Chemical Changes in the Body

By Labmedica International staff writers
Posted on 19 Jan 2012
Image: Scanning electron micrograph (SEM) of a hollow microneedle. In this study, hollow microneedles were integrated with sensors for detection of glucose, lactate, and pH levels (Photo courtesy of North Carolina State University).
Image: Scanning electron micrograph (SEM) of a hollow microneedle. In this study, hollow microneedles were integrated with sensors for detection of glucose, lactate, and pH levels (Photo courtesy of North Carolina State University).
A new technology uses microneedles to allow doctors to detect real-time chemical changes in the body--and to do so continuously for an extended period of time.

Microneedles are very small needles in which at least one dimension--such as length--is less than one millimeter. The hollow channels within microneedles are loaded with electrochemical sensors that can be used to detect specific molecules or pH levels.
Existing technology relies on taking samples and testing them, whereas this approach allows continuous monitoring, explained Prof. Narayan of NC State's College of Engineering (Raleigh, NC, USA) and the University of North Carolina at Chapel Hill (NC, USA). "For example, it could monitor glucose levels in a diabetic patient," he said.

The scientists developed a proof-of-concept sensor array incorporating three types of sensors, which could measure pH, glucose, and lactate. However, Prof. Narayan says the array could be modified to monitor a wide variety of chemicals.

"The idea is that customized microneedle sensor arrays could be developed and incorporated into wearable devices, such as something like a wristwatch, to help answer specific medical or research questions," added Prof. Narayan. "It's also worth pointing out that microneedles are not painful."

The technology was developed by scientists from North Carolina State University (Raleigh, NC, USA), Sandia National Laboratories (Albuquerque, NM, USA), and the University of California, San Diego (CA, USA).

The microneedles were described online in the November 2011 edition of the journal Talanta.

Related Links:
NC State's College of Engineering
University of North Carolina at Chapel Hill
Sandia National Laboratories



PURITAN MEDICAL
EUROIMMUN AG
Sekisui Diagnostics
comments powered by Disqus
Life Technologies

Channels

Pathology

view channel
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).

Brain Tumor Chemotherapy Biomarkers Identified

Cancer researchers have identified a new biomarker that they believe can predict whether glioblastoma multiformes (GBMs), the most common and aggressive type of malignant brain tumor, will be susceptible... Read more

Lab Technology

view channel
Image:  The Becton Dickinson fluorescent activated cell sorter FACScan (Photo courtesy of the Albert Einstein College of Medicine).

Noninvasive Method Captures Circulating Tumor Cells

A clinically proven, noninvasive fluorescence virus-guided capture system of human colorectal circulating tumor cells (CTCs) from blood samples for genetic testing has been introduced. This noninvasive... Read more

Industry News

view channel

Beckman Coulter Acquires Siemens Healthcare Diagnostics’ Clinical Microbiology Business

Beckman Coulter (Brea, CA, USA), an indirect wholly-owned subsidiary of Danaher Corp. (Washington DC, MD, USA) has entered into a definitive agreement to purchase the clinical microbiology business of Siemens Healthcare Diagnostics (Chicago, IL, USA). The transaction is expected to close in the first quarter of 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.