We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

New Method Identifies Anthrax Bacteria Faster Than Current Approaches

By LabMedica International staff writers
Posted on 06 Mar 2014
Print article
Caption: The anthrax bacteria – Bacillus anthracis, transmitted mainly through inhalation or skin abrasions (Photo courtesy of University of Missouri).
Caption: The anthrax bacteria – Bacillus anthracis, transmitted mainly through inhalation or skin abrasions (Photo courtesy of University of Missouri).
A new method has been developed for rapid diagnostic detection and antibiotic susceptibility determination of the pathogenic Bacillus anthracis using a bioluminescent reporter phage.

Although anthrax is a treatable disease, positive patient prognosis is dependent on rapid diagnosis and therapy. A team at the University of Missouri (MU; Columbia, MO, USA) assessed a bioluminescent reporter phage, developed by David Schofield at Guild BioSciences (Charleston, SC, USA), for its value as a clinical diagnostic tool for Bacillus anthracis. The reporter phage based method, published in the Journal of Microbiological Methods (November 2013), detects live B. anthracis strains by transducing a bioluminescent phenotype. It was found to rule out false positives – displaying species specificity by its inability, or significantly reduced ability, to detect members of the closely related Bacillus cereus group and other common bacterial pathogens.

The method detects low levels of B. anthracis, at clinically relevant bacterial concentrations, within 5 hours. “Normally to identify whether an organism is present, you have to extract the material, culture it, and then pick colonies to examine that might turn out to be anthrax bacteria,” said Prof. George Stewart, PhD, medical bacteriologist. “Then you conduct chemical testing which takes some time—a minimum of 24 to 48 hours. Using this newly-identified method, we can reduce that time to about 5 hours.” The method also provides antibiotic susceptibility information that mirrors the CLSI method, except that data are obtained at least 5-fold faster.

In addition to saving lives, the new method could also save on high clean up and decontamination costs of bioterrorism attacks. These costs for the post-9/11 2001 anthrax letters attack totaled USD 3.2 million, according to a 2012 report. “In the years since the post-9/11 postal attacks, we haven’t had any bona fide anthrax attacks,” said Prof. Stewart; “That doesn’t mean that it’s not going to happen, we just have to be prepared.” Current methods take 1–3 days to produce definitive results for anthrax. The new detection method would potentially alert of a negative result 5 hours into clean-up efforts instead of 1–3 days into expensive decontamination.

Related Links:
University of Missouri at Columbia
Guild Biosciences

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.