We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Smart Petri Dish Simplifies Medical Diagnostic Tests

By LabMedica International staff writers
Posted on 13 Oct 2011
Print article
Image: The ePetri platform is built from Lego blocks and uses a smart phone as a light source. The imaging chip is seen in detail on the right (Photo courtesy of Guoan Zheng, Caltech).
Image: The ePetri platform is built from Lego blocks and uses a smart phone as a light source. The imaging chip is seen in detail on the right (Photo courtesy of Guoan Zheng, Caltech).
A smart Petri dish does away with the need for bulky microscopes and significantly reduces human labor time, while improving the way in which bacterial culture growth can be recorded.

Imaging sensor chips, similar to those in built-in cameras of cell phones, transform the way cell cultures are imaged by serving as a platform for the smart Petri dish. The device, dubbed ePetri, was built by engineers at the California Institute of Technology (Caltech; Pasadena, CA, USA) using a Google smart phone, a commercially available cell-phone image sensor, and Lego building blocks.

The culture is placed on the image-sensor chip, while the phone's LED screen is used as a scanning light source. The device is placed in an incubator with a wire running from the chip to a laptop outside the incubator. As the image sensor takes pictures of the culture, the information is sent out to the laptop, enabling scientists to acquire and save images of the cells as they are growing in real time. The technology is particularly useful for imaging confluent cells--those that grow very close to one another and typically cover the entire Petri dish.

Biologists use Petri dishes primarily to grow cells. In the medical field, they are used to identify bacterial infections, such as tuberculosis. Conventional use of a Petri dish requires that the cells being cultured be placed in an incubator to grow. As the sample grows, it is removed--often numerous times--from the incubator to be studied under a microscope.

"Our ePetri dish is a compact, small, lens-free microscopy imaging platform. We can directly track the cell culture or bacteria culture within the incubator," explained Guoan Zheng, lead author of the study and a graduate student in electrical engineering at Caltech. "The data from the ePetri dish automatically transfers to a computer outside the incubator by a cable connection. Therefore, this technology can significantly streamline and improve cell culture experiments by cutting down on human labor and contamination risks."

Changhuei Yang, senior author of the study and professor of electrical engineering and bioengineering at Caltech, and his team believe that the ePetri system will open up a whole range of new approaches to many other biological systems. For example, ePetri could provide microscopy-imaging capabilities for other portable diagnostic lab-on-a-chip tools.

The team is working to build a self-contained system that would include its own small incubator. This would make the system more useful as a desktop diagnostic tool that could be housed in a doctor's office, reducing the need to send bacteria samples out to a lab for testing.

The device is described in a paper that appears online in the Proceedings of the National Academy of Sciences (PNAS) in September 2011.

Related Links:
California Institute of Technology



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The QIAstat-Dx Analyzer 2.0 with remote test results access enhances collaboration across the healthcare system (Photo courtesy of QIAGEN)

Upgraded Syndromic Testing Analyzer Enables Remote Test Results Access

QIAGEN (Venlo, the Netherlands) has released the QIAstat-Dx Analyzer 2.0, including the Software 1.6 upgrade. This represents a significant advancement from the initial QIAstat-Dx Analyzer 1.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The RedDrop One blood collection device has received 510(k) clearance from the U.S. FDA for prescription use (Photo courtesy of RedDrop Dx)

Innovative Blood Collection Device Overcomes Common Obstacles Related to Phlebotomy

The discomfort associated with traditional blood draws leads to a significant issue: approximately 30% of diagnostic tests prescribed by physicians are never completed by patients. This avoidance is often... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.